Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 24(2): 293-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734444

RESUMO

Donor shortage is a major problem in lung transplantation (LTx), and the use of lungs from elderly donors is one of the possible solutions in a rapidly aging population. However, the utilization of organs from donors aged >65 years has remained infrequent and may be related to a poor outcome. To investigate the molecular events in grafts from elderly donors early after LTx, the left lungs of young and old mice were subjected to 1 hour of ischemia and subsequent reperfusion. The left lungs were collected at 1 hour, 1 day, and 3 days after reperfusion and subjected to wet-to-dry weight ratio measurement, histological analysis, and molecular biological analysis, including RNA sequencing. The lungs in old mice exhibited more severe and prolonged pulmonary edema than those in young mice after ischemia reperfusion, which was accompanied by upregulation of the genes associated with inflammation and impaired expression of cell cycle-related genes. Apoptotic cells increased and proliferating type 2 alveolar epithelial cells decreased in the lungs of old mice compared with young mice. These factors could become conceptual targets for developing interventions to ameliorate lung ischemia-reperfusion injury after LTx from elderly donors, which may serve to expand the old donor pool.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Animais , Camundongos , Envelhecimento , Inflamação/patologia , Isquemia/patologia , Lesão Pulmonar/patologia , Transplante de Pulmão/métodos , Traumatismo por Reperfusão/patologia
2.
J Biochem ; 171(5): 567-578, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35137113

RESUMO

NRF2 is a transcription activator that plays a key role in cytoprotection against oxidative stress. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental, as it drives their malignant progression. We previously found that CCAAT/enhancer-binding protein B (CEBPB) cooperates with NRF2 in NRF2-activated lung cancer and enhances tumour-initiating activity by promoting NOTCH3 expression. However, the general contribution of CEBPB in lung cancer is rather controversial, probably because the role of CEBPB depends on cooperating transcription factors in each cellular context. To understand how NRF2 shapes the function of CEBPB in NRF2-activated lung cancers and its biological consequence, we comprehensively explored NRF2-CEBPB-coregulated genes and found that genes involved in drug metabolism and detoxification were characteristically enriched. Indeed, CEBPB and NRF2 cooperatively contribute to the drug resistance. We also found that CEBPB is directly regulated by NRF2, which is likely to be advantageous for the coexpression and cooperative function of NRF2 and CEBPB. These results suggest that drug resistance of NRF2-activated lung cancers is achieved by the cooperative function of NRF2 and CEBPB.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Fc , Transdução de Sinais
4.
Nat Commun ; 11(1): 5911, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219226

RESUMO

Transcriptional dysregulation, which can be caused by genetic and epigenetic alterations, is a fundamental feature of many cancers. A key cytoprotective transcriptional activator, NRF2, is often aberrantly activated in non-small cell lung cancers (NSCLCs) and supports both aggressive tumorigenesis and therapeutic resistance. Herein, we find that persistently activated NRF2 in NSCLCs generates enhancers at gene loci that are not normally regulated by transiently activated NRF2 under physiological conditions. Elevated accumulation of CEBPB in NRF2-activated NSCLCs is found to be one of the prerequisites for establishment of the unique NRF2-dependent enhancers, among which the NOTCH3 enhancer is shown to be critical for promotion of tumor-initiating activity. Enhancer remodeling mediated by NRF2-CEBPB cooperativity promotes tumor-initiating activity and drives malignancy of NRF2-activated NSCLCs via establishment of the NRF2-NOTCH3 regulatory axis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carcinogênese/genética , Carcinógenos , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais
5.
Biophys Rev ; 12(2): 435-441, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112372

RESUMO

The KEAP1-NRF2 system is a sulfur-employing defense mechanism against oxidative and electrophilic stress. NRF2 is a potent transcription activator for genes mediating sulfur-involving redox reactions, and KEAP1 controls the NRF2 activity in response to the stimuli by utilizing reactivity of sulfur atoms. In many human cancer cells, the KEAP1-mediated regulation of NRF2 activity is abrogated, resulting in the persistent activation of NRF2. Persistently activated NRF2 drives malignant progression of cancers by increasing therapeutic resistance and promoting aggressive tumorigenesis, a state termed as NRF2 addiction. In NRF2-addicted cancer cell, NRF2 contributes to metabolic reprogramming in cooperation with other oncogenic pathways. In particular, NRF2 strongly activates cystine uptake coupled with glutamate excretion and glutathione synthesis, which increases consumption of intracellular glutamate. Decreased availability of glutamate limits anaplerosis of the TCA cycle, resulting in low mitochondrial respiration, and nitrogen source, resulting in the high dependency on exogenous non-essential amino acids. The highly enhanced glutathione synthesis is also likely to alter sulfur metabolism, which can contribute to the maintenance of the mitochondrial membrane potential in normal cells. The potent antioxidant and detoxification capacity supported by abundant production of glutathione is achieved at the expense of central carbon metabolism and requires skewed metabolic flow of sulfur. These metabolic features of NRF2 addiction status provide clues for novel therapeutic strategies to target NRF2-addicted cancer cells.

6.
Mol Cell Biol ; 38(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29941490

RESUMO

Cancer cells often heavily depend on the ubiquitin-proteasome system (UPS) for their growth and survival. Irrespective of their strong dependence on the proteasome activity, cancer cells, except for multiple myeloma, are mostly resistant to proteasome inhibitors. A major cause of this resistance is the proteasome bounce-back response mediated by NRF1, a transcription factor that coordinately activates proteasome subunit genes. To identify new targets for efficient suppression of UPS, we explored, using immunoprecipitation and mass spectrometry, the possible existence of nuclear proteins that cooperate with NRF1 and identified O-linked N-acetylglucosamine transferase (OGT) and host cell factor C1 (HCF-1) as two proteins capable of forming a complex with NRF1. O-GlcNAcylation catalyzed by OGT was essential for NRF1 stabilization and consequent upregulation of proteasome subunit genes. Meta-analysis of breast and colorectal cancers revealed positive correlations in the relative protein abundance of OGT and proteasome subunits. OGT inhibition was effective at sensitizing cancer cells to a proteasome inhibitor both in culture cells and a xenograft mouse model. Since active O-GlcNAcylation is a feature of cancer metabolism, our study has clarified a novel linkage between cancer metabolism and UPS function and added a new regulatory axis to the regulation of the proteasome activity.


Assuntos
Fator 1 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Acetilglucosamina/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glicosilação , Células HEK293 , Células HeLa , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fator 1 Relacionado a NF-E2/química , Fator 1 Relacionado a NF-E2/genética , Neoplasias/genética , Fator 1 Nuclear Respiratório , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA